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The masses of the ground-state light baryons are calculated in the quark model. 
The unperturbed wave functions correspond to a hyperspherical harmonic 
confinement. The perturbation includes a short-range potential and all the 
relevant relativistic corrections of the order of v2/c 2. Results are compared with 
the experimental values and found to be in good agreement. This may be a test 
not of the hyperspherical harmonic model so much as of the feasibility of a 
simple (but consistent) relativistically corrected fit of the light baryon masses. 

1. I N T R O D U C T I O N  

In  a previous  paper  (Raspini ,  1988) we proposed  a hyperspher ica l  

h a r m o n i c  model  of  the 18 ground-s ta te  light baryons .  The employed  non-  

relativistic H a m i l t o n i a n  

2 

- - + - E  ~ (ri-r~) 2 H(o) = x~ pi K rn~mj 
2m~ 2 i . j  2 M  

(1) 
i , j = 1 , 2 , 3 ;  M = ~ m i  

i 

inc ludes  the kinet ic  energy and  a long-range  (confining)  hypercent ra l  har- 

mon ic  potent ia l  (Fabre  De La Ripelle,  1984), with elastic cons tan t  of  fixed 

value 3 K. As usual ,  pi are the canonica l  momen ta ,  r; the posi t ions,  and  mi 

the effective (const i tuent)  masses of the three quarks;  uni ts  will be such 
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3A straightforward and "natural" modification is that of a mass-dependent elastic constant: 
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totally symmetric (a = M reproduces the fixed-K case). 

1407 

0020-7748/92/0800-1407506.50/0 @ 1992 Plenum Publishing Corporation 



1408 Raspini 

that h = c = 1. The wave functions are as follows, in the center of  mass (cm) 
frame of reference (Raspini, 1988): 

I~cm(gb, S)) = Inn = +1; W)  

[~[Kmlrn2m3'~ 3/4 [ l (MK)l/2s~2]}l~(gb, S) ) 
x [ \  ~r2MZD z ] e x p L -  i (2) 

. i J  

where (i) gb stands for the name of the baryon (e.g., A ++, A +, etc.); (ii) S 
indicates the z-spin eigenstate of  the baryon (S = - 3 / 2 ,  - 1 / 2 ,  +1/2,  +3 /2  
for the decuplet, S = - 1 / 2 ,  +1 /2  for the octet); (iii) the ket IBn = +1; W> 
represents the (normalized) color baryon number wave function of  a color- 
less ( W )  baryonic state of baryon number Bn = +1 (for antibaryons, gb ~ gb 
by means of  Bn ~ - 1 ) ;  (iv) {-> 0 is the hyperradial variable 

~2 mimj 
= ,~g ~M--~ ( r i -  rj) 2 (3) 

and D 3 ~ oo stands for the volume of the three-dimensional space, according 
to the convention 

f dR  = (4) D 3 

where R is the cm position of the baryon. The space eigenfunction (in curly 
brackets) is then normalized with respect to the nine-dimensional volume 

dv = [I dri (5) 
i 

and (v) the ket I~ S)) = I ~ S)) denotes the flavor spin wave function, 
which has the general form 

[~ S))= ~ C~(gb, S)lfl', s')~lfl", s"}21fl", s"t)3 
F 

F = (fl', s',fl", s",fl", s'") (6) 

if f l  are the quark flavors [up (up), down (dw), strange (st)] and s the 
quark z-spin eigenvalues ( - 1 / 2 , + 1 / 2 ) .  The Cv(gb, S) coefficients are 
chosen according to well-known rules, including orthonormalization and 
symmetry. For example (Perkins, 1982) 

[a//(A++, +3/2))  = lup, +l/2>llup, +l/2)21up, +1/2)3 (7) 

that is, 

CF(A ++, +3/2)  = 6(fl', up)8(S', +1/2)6(f1", up)6(S", +1/2)  
X 8(fl'", up)6(S", +1/2)  (8) 

where 6( , )  is the Kronecker delta; note in particular the relations 

,(ill f/)),  = 6(fl, fl) (9) 

,(sl~), = 8(s, ~) (10) 
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Furthermore, the space wave function formally operates on the SU(6) wave 
function in the following way (Raspini, 1988): 

m, lfl), = m (fl)[fl)~ (11 ) 

where m(f l )  is the f/-eigenvalue of the m i mass operator [that is, the mass 
of the quark in I')i: see also Messiah (1966), Chapter XIV, w For the 
purpose of clarity, we recall here that each baryon gb has a "permutational" 
flavor contents ( qa, qb, qc)l~b, with qa, qb, qc ~ {up, dw, st}. That is, the non- 
vanishing CF(gb, S) coefficients are among those for which ( f l ' , f l " , f l " )  is 
a permutation of (qa, qb, qc)lgb (Perkins, 1982). Hence, if O(ml, rn2, m3) is 
totally symmetric, Oleg(gb, S))= O(gb)lali(gb, S)), where 0 is the obvious 
eigenvalue. (In particular, this applies to the mass M.) 

In the present paper, the described model will be utilized for the 
calculation of the masses of the 18 baryons. This will be done considering 
H(o) as the unperturbed Hamiltonian, and adding to it the following per- 
turbations: (a) the v2/c 2 relativistic correction to the kinetic energy; (b) the 
v2/c 2 relativistic corrections to the confining potential; and (c) a short-range 
potential, including "D2/C 2 relativistic terms. 

2. CORRECTIONS TO THE KINETIC ENERGY AND 
CONFINING POTENTIAL 

The expression of the IA2/C 2 correction to the kinetic energy has the 
standard form (Grotch and Sebastian, 1982) 

p4 
HO'= ~ - 8m---~- (12) 

For the calculation of the v2/c 2 corrections to the confining potential, we 
apply to each pair of quarks the general prescriptions outlined by Grotch 
and Sebastian (1982), based on the Barker-Glover reduction of the two-body 
Dirac Hamiltonian. If the confining potential of equation (1) is considered 
to be a scalar, we obtain, after some simple algebra, 

Kmj [ 2 _3~+_, y _  Kmj 
H(2)=i~j 4m---l~ pirij'pi 2/ i~j 2miM 2 S, ' ( r / jxp , )  (13) 

where 

r~=ri-r~; r/j =lr~l (14) 

and S~ are the quark spin operators. On the other hand, if the confining 
potential of equation (1) has a vector nature, the set of corrections is 
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different: 

with 

Raspini 

3K (mi+mj)E+mimj 
i~j 16M = mimi 

K = 
+ ,~j-~-~-i[pir o �9 pj - 2(p, �9 r,j)(r 0 �9 p~)] 

Kmj 
x p , ) +  T, + Y~ ~ S o �9 (r,, St" Sj 

i~aj i # j  M 
(15) 

So= S, + S j  (16) 
2mi mj 

The latter case will be here discarded, since the hypothesis of a scalar 
confinement is more widely accepted: see, for example, Gupta et al. (1982). 
For a generalization, note the possibility of a partly scalar and partly vector 
confinement (Grotch et al., 1984). 

3. SHORT-RANGE POTENTIAL 

The nonrelativistic short-range potential will be taken to have the 
following form (Sebastian. 1982): 

H(4) = Y, K-A~ 
i~j 2r 0 (17) 

with (Rosner. 1981) 

Kij 2 = eiej -~T0 (18) 

where e~ are the quark charges and T0 = Tj~ plays the role of  the (effective) 
strong coupling constant between the quark labeled i and the quark labeled 
j. Since the short-range potential has a vector nature (Sebastian, 1982), the 
v2/c 2 corrections turn out to be (Grotch and Sebastian, 1982; see also 
Sebastian, 1982; Raspini, 1985) 

H ( 5 ) = ~ -  K--2L-~ ( p ~ l . p j )  
~j 4mimj \ r U 

Ko / 1 )  Ko /ro ) 
"~ i~j ~ --4mimj~ pi'rij'~'3 d- i~j y" - - - -  S~ ~kr~X P i m i  

x ] + - 2 2 S i ' S j  ~(r ,)  i~j 2 L\2mi 2mj/ 3mlmj 

y K,j 13[ 3(S , - ro ) (S j . r , j ) ]  
+ i~j 2mimj Si" Sj 2 (19) r o 
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We here take 

/'3 mi + 3 mj 

with y = 1.50. This is based on the formula 

yo=y[ l_~  ( 3 3 - 2 u ) y ,  [rn~'~] -1 
12~ ,n~-- , ]  (21) 

where u stands for the number of relevant different flavors (u = 3, in our 
case), m o = mj~ is a mass scale for the /j quark pair, and Z indicates the 
reference mass value. [See equations (3.1), (3.2) of Gupta et al. (1982).] 
Assuming an intrinsic mass scale Zo, identical for all the ground-state light 
baryons, a possible estimate is as follows: 

mi + mj Zo (22) rn~ - M 

and equation (20) finally results, choosing z = 2Zo/3 (so that 3/corresponds 
to quarks in A ++, A-, or f~). In order to decrease the number of free 
parameters, y was preselected to be 1.50, which is a rough average of values 
adopted for similar mass fit purposes in different models (Heller, 1982). As 
for the quark charges, we observe that (Raspini, 1988) 

IBn = +I) = lbn = Bn/3) l lbn  = Bn/3)21bn = Bn/3)3 
(23) 

,(bnlb~), = 3(bn, ba) 

where bn indicates the quark baryon number. Then 

e, lfl ,  bn), = e ( f l ,  bn) l f l ,  bn), (24) 

with e(up, +1/3) = • and e(dw, • = e(st, • = :F1/3 (in units of 
the proton's charge). 

4. CM VARIABLES 

The various Hamiltonian operators here introduced [equations (1), 
(12), (13), (15), (17), and (19)] can all be expressed in terms of relative 
variables ~i, P;, total momentum P = Y~i p~, and cm position R = (Y~ mir~)/M, 
according to the equations (Raspini, 1985, 1988) 

mi 
P i = ~ i + ~ P  (25) 

ri = Pi + R (26) 
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with constra ints  

Y, ~ i  = 0 ;  Y, rnipi = 0  
i i 

The  only nonvan i sh ing  commuta to r s  are 

[p~,  rr~] = i8``b(6,j - m j M )  

[R a, pb ]  = iS~b 

where  superscr ip ts  indicate  Car tes ian  componen t s .  
I f  we define the coordina tes  

' I l l  = Pl --P3 = r ]  - r 3  

TI2 = P2 -- P3 = r2 -- r3 

Raspiui  

(27) 

(28) 

(29) 

(30) 

(31) 

Pl~cm)=O (40) 

(39) 

and  I~cm} is any  cm state: 

where  

h(t3) = H(m(~ i ,  Pi, S,) 

we can use R, "ill , and  ~2 to span  the whole  n ine-d imens iona l  space,  

rl = R+-~M [ (m2+  m3)~1 -- m2~2] (32) 

1 
r 2 = R - ~ [ m l ~ q l  - (ml  + m3)II2] (33) 

1 
r 3 = R - ~ ( m l l h  + m2~q2) (34) 

Fu r the rmore  (Raspini ,  1988), 

O 
P`` = - i - -  (35) 

OR" 

O r) 
rr~ = - i  `̀  ; r = - i  (36) 

0~7] 8~7~ 

`̀  . 0 . 0 ( 3 7 )  

= '  0 

For  each  of  the Hami l ton i an  opera to r s  H(~)(p,, r,, S~),/3 = 0 , . . . ,  5, the 
rep lacements  (25) and  (26) may  be e m p l o y e d  to show that  

H(t~)lxltcr.) = h(t3)[~r (38) 
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To operate on the wave functions (2), we can then use the h(~), in which 
the p~ variables are expressed in terms of  "ql, "q2 [equations (26) and 
(32)-(34)] and the ~ variables by means of equations (36) and (37). The 
volume element (5) and the hyperradius (3) are as follows (Raspini, 1988): 

dv = dR drh d~12 

~2 1 2 
= ~-~[ml(m2 + rn3)~ + m2(ml + m3)ll~-2mamz~h" ~12] (41) 

5. M A S S E S  OF THE BARYONS 

It is here convenient to define 

h = M +  ~ h~z )  (scalar confinement) (42) 
/3~3 

Also, �9 = q0* will indicate the space wave function of  equation (2). In 
first-order perturbation theory, the masses of the baryons may be calculated 
as follows: 

J/l(gb ) = (Xltcm(gb , S)lhl~cm(gb , S) ) (43) 

which gives, after some simple algebra 

./el(gb ) = ~. C*(gb, S)C~(gb, S)6( f l ' , f l ' )6( f l" , f l")6( f l" , f l")  
F,F 

x { f dv (3(s',2(s"l l(s'l~hdplf')ll#")21ff')3)} (44) 

where the spin space matrix element, in curly brackets, is to be evaluated 
with ml = m(fl'), el = e(fl', +1/3) ,  m2 = m(fl"), etc., according to equations 
(11), (24). [Obviously, Bn-->-Bn changes the charges but does not change 
results, that is, ~(gb)=  d~(gb).] The computation of the matrix elements 
needed in equation (44) is tedious but straightforward: a numerical fit then 
gives the results of  Table I. The small mass splitting between up and dw 
has been chosen to reproduce, roughly, the proton-neutron mass splitting. 4 
The table, however, does not show the different states of  charge for each 
hadron: the displayed mass values are averaged over these states. See also 
Rosner (1981). 

While doing the fit, we kept m(up) and Wo "reasonably" close to some 
reference values. For re(up), the reference value was (A+ N)/6,  which is 
a crude, but sound, estimate (Rosner, 1981). (Hadron symbols here indicate 
experimental masses.) As for Wo, a rough reference value is obtainable from 

4If re(up) = rn(dw), the proton comes out slightly heavier than the neutron, due to the internal 
electromagnetic interaction of the constituent quarks [see equation (18)]. 
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Table I. Masses of  the Baryons (MeV) 

Experimental Calculated 

N 939 939 
A 1116 1119 
E 1193 1158 
A 1232 1208 

1318 1316 
E* 1384 1379 
2 "  1533 1544 
12 1672 1699 

m(up) = 558MeV m(dw) = 560MeV 
m(st) = 721MeV 

to o--- [K/3m(up)] 1/2 = 398 MeV 

the experimental baryon spectrum, considering the mass spacings between 
our ground-state A and the known excited states of the same type (Rosner, 
1981). We recall that the cm energy levels of the confining Hamiltonian (1) 
are as follows (Raspini, 1988): 

/ K \  1/2 

e, = (n + 3)1-7-~.] , n = 0 ,  1 , . . .  (45) 
\ i v1 /  

so that 

(en  -- EO)IA++ type = /'/tOo (46) 

Some doubts obviously exist about the validity of the perturbation treatment, 
especially of the nonrelativistic short-range potential: a possible improve- 
ment of the method would have to take into account the modifications to 
the wave functions due to the presence of (17). Overall, the mass fit is 
satisfactory, with an average error of the order of 1%. This is certainly 
interesting, given the simplicity and consistency of the model. In fact, most 
ad hoe fits are only better by a factor of two in the average percent error 
(e.g., Rosner, 1981). 
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